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Abstract

Irrespective of the specific definition of fairness in a machine learning application,
pruning the underlying model affects it. We investigate and document the emer-
gence and exacerbation of undesirable per-class performance imbalances, across
tasks and architectures, for almost one million categories considered across over
100K image classification models that undergo a pruning process. We demonstrate
the need for transparent reporting, inclusive of bias, fairness, and inclusion metrics,
in real-life engineering decision-making around neural network pruning. In re-
sponse to the calls for quantitative evaluation of AI models to be population-aware,
we present neural network pruning as a tangible application domain where the ways
in which accuracy-efficiency trade-offs disproportionately affect underrepresented
or outlier groups have historically been overlooked. We provide a simple, Pareto-
based framework to insert fairness considerations into value-based operating point
selection processes, and to re-evaluate pruning technique choices.

1 Introduction

Large-scale deep learning models are presently being employed in society at large across a multitude
of high-stakes applications, including healthcare, law enforcement, and insurance, with consequential
decision-making power over various aspects of human life. In order to reduce the memory and
computational footprints, as well as the energy consumption of these models, techniques for model
compression, including pruning and quantization, are often used to alter the model in invasive yet
supposedly uninfluential ways.

Thresholds are usually placed on acceptable performance loss in compressed models. However, it
is currently uncommon, when introducing new pruning techniques, to benchmark them according
to fairness and bias metrics, and to further investigate the downstream effects of even minimal
performance degradations introduced by the proposed intervention. Our goal is to promote proactive
monitoring, especially among the community involved in real world deployment of pruned models, of
the subtle dangers and repercussions of applying model compression interventions without a proper
bias and fairness evaluation pipeline.

Systematic biases are known to plague many AI models [3], and may be exacerbated in non-trivial
ways by pruning interventions. We are interested in quantifying the inequality of treatment among
classes, cohorts, and individuals as network capacity is reduced. Specifically, the hypothesis we seek
to test is that class imbalance and class complexity affect the per-class performance of pruned models.
We model and measure the contribution of these factors to the observed changes in performance in
pruned models, while controlling for other factors of variations, such as model type, dataset, pruning
technique, and choice of rewinding or finetuning weights after pruning. We demonstrate that, as
networks are pruned and sparsity increases, model performance deteriorates more substantially on
underrepresented and complex classes than it does on others, thus exacerbating pre-existing disparities
among classes. In addition, as model capacity is reduced, networks progressively lose the ability to
remain invariant to example properties such as angular orientation in images, which results in higher
performance losses for groups, sub-groups, and individuals whose examples exhibit these properties.
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We critique the practice of benchmarking the efficacy of novel pruning routines solely along axes of
total accuracy and computing costs, and suggest fairness as an additional dimension to consider when
evaluating trade-offs and disclosing limitations. In line with prior work on ethical reporting [23, 30],
we raise awareness on the problematic reporting norms in the model compression literature.

As recommended [30], we refrain from proposing yet another complex and opaque technical solution
to the socio-technical problems of unfairness and bias in AI models; instead, we limit ourselves
to documenting and quantifying the extent of these issues in a common, practical scenario, while
contributing methodology for operationalizing this type of assessment in ways that can be integrated
into transparent decision-making workflows for practitioners. We believe this to be of particular
urgency for model compression and architecture optimization, due to the growing practical need
of reducing model size, especially in applications of AI in developing countries, on device, and in
low-bandwidth or otherwise low-resource environments [22, 27].

2 Related Work

Prior work on machine learning transparency recommended the release, alongside new models,
of detailed and transparent performance documentation and intended use-cases in an Acceptable
Use Policy format called model cards, in order to prevent model misuse in unsafe scenarios [23].
Similarly, our work calls for more thoughtful and responsible practices around evaluation and
transparent reporting of model performance, all while specifically grounding the analysis in the
concrete use-case scenario of neural network pruning, as demanded by work that advocates for
moving beyond abstract and unrealistic fairness settings [33].

Surveys of ML practitioners across companies and roles, aimed at better understanding the practical
challenges they face when trying to build fairer systems in real-world contexts [16], served as an
inspiration for us to focus on tackling challenges in a concrete scenario that often occurs in model
design and optimization across ML products: pruning. We identify pruning as a high-stakes example
of a widespread yet potentially disruptive technique for model compression used in real-world,
deployed models. Specifically, in this work, we demonstrate the need for transparent reporting,
inclusive of bias, fairness, and inclusion metrics, as advocated for in prior related work [23], in
real-life engineering decision-making in the context of pruning.

Others have pointed out how the very process of documenting details of model design and expected
behavior induces practitioners to reflect on the practical consequences of their engineering choices
throughout the whole model design and development procedure [30]. In this work, we apply notions
and recommendations from prior foundational ML fairness and transparency literature to demonstrate
its applicability as an anchor for ethical AI engineering and development. Concretely, we respond
to calls for transparent reporting and accounting of sub-population and intersectionality in model
performance, by presenting a practical proving ground, in the form of the network pruning scenario,
in which traditional trade-off considerations often fail to examine effects on individuals, populations,
and classes.

Classical trade-offs between accuracy and fairness may be unjustifiable or unethical, represent a
practical impossibility in many high-stakes scenarios, or simply create false dichotomies [4]. We
suggest, instead, considering sparsity-fairness trade-offs when neural network pruning is applied,
and present these two quantities under the light of two desirable yet, at times, competing secondary
goods.

Finally, issues of compatibility of fairness quantification strategies with one another or with the legal
framework [11, 34, 7, 24, 35] guided our decision to abstain from proposing new context-specific
fairness measures or automated fairness-inducing or unfairness-mitigating techniques.

3 Experiments

We make two levels of arguments as to why those deploying pruned models should consider fairness
as part of their selection process. First, we consider a network population argument, to assess the
effect of class characteristics and imbalance on per-class pruned network performance, as quantified
from the analysis of almost one million classes considered across over 100K trained and pruned
image classification models. Second, we consider two individual case studies to highlight practical
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implications of fairness evaluation in pruned models; in one, we are able to peek behind latent
and sensitive attributes, such as group membership, to gain some understanding of reasons behind
degraded pruned network performance targeting certain individuals (Sec. 4.1); in the other, we borrow
from the tools of economics to provide a framework and real-world example of how including fairness
may affect pruning method selection (Sec. 4.2).

To ascertain the global effect of pruning on class-level accuracy, we conduct a large-scale experimental
study, training a series of LeNet [20], AlexNet [19], VGG11 [32] and ResNet18 [15] architectures in
a supervised way on the following image classification tasks: MNIST [21], Fashion-MNIST [36],
QMNIST [37], Kuzushiji-MNIST (or KMNIST) [5], EMNIST [6], CIFAR-10, CIFAR-100 [18],
SVHN [26]. Each iteration of training consists of 30 epochs of stochastic gradient descent with
constant learning rate 0.01 and batch size of 32, across 4 NVIDIA Tesla V100-SXM2 GPUs using
torch.nn.DataParallel [28] to handle distribution. Each network is iteratively trained, pruned,
and either finetuned or rewound to the original weights at initialization (as suggested in the Lottery
Ticket-finding algorithm [9]), for 20 iterations. Each pruning iteration was set to remove 20% of the
unpruned weights. We repeat the procedure for L1, L2, L∞, and random structured pruning, and L1,
global, and random unstructured pruning. More details on the pruning techniques can be found in
Appendix A. All together, this consists of 120,906 models for analysis.

We evaluate all models at a per-class level, in order to measure per-group performance degradation of
pruned models, with class-accuracy for a given class c defined as

ac =
|{(x, y) ∈ D | y = ĥ(x) = c}|
|{(x, y) ∈ D | y(x) = c}|

, (1)

whereD = {(xi, yi)}i is a labeled classification dataset where xi ∈ RD and yi ∈ N, and ĥ : RD −→
N is a trained model we wish to evaluate. As networks are iteratively sparsified, total accuracy drops,
but it does so at non-identical rates across classes (Fig. 3c; see Figs. 5, and 7 in the Appendix for
more detail).

3.1 Model

For a pruned model, we wish to assess the impact of variables of interest, such as class imbalance or
class complexity, on the per-class performance, to assess disparate class treatment in pruned models.
We hypothesize that even minor performance drops observed (and often deemed acceptable) in
pruned models might be disproportionately affecting the model’s performance on individual classes,
as opposed to being evenly distributed among all classes. We model the class-accuracy as a function
of all measured covariates using an ordinary least squares (OLS) fit to the collected pruned model
performance data.

For simplicity, we begin by only including linear terms in the explanatory variables, and later compare
to a second model that adds second order interaction terms between them. Note that, in addition to the
polynomial terms, the relationship between accuracy and model sparsity is further modeled through
an additional exponential term – a reasonable modeling assumption supported by prior knowledge of
accuracy-sparsity curves in the pruning literature [9, 12, 25, 38, 31, 1, 10].

Our model

ac = A · esparsity +B · sparsity + C · a0c +D · quartile(a0c) + E · rc+
+ F ·Hc +G · Id +H · Iw + J · Ip +K · Im + cross terms

(2)

accounts for the following:

1. unpruned model accuracy, a0c , quantified as the initial, pre-pruning accuracy for class c;
2. sparsity, defined as the fraction of pruned weights;
3. class imbalance, rc, quantified in terms of the over- or under-representation quantity

rc = nc − 1
C

C∑
i=1

ni, where ni = |{(x, y) ∈ D | y = i}|/|D| is the fraction of examples

belonging to class i that are present in the training set, and C is the number of classes in that
classification task;
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4. average example entropy, Hc = 1
C

Nc∑
i=1

[
−
∑
v

(pv log2(pv))

]
, defined as the average

Shannon entropy of images in class c, where the inner sum is taken over pixel values v, with
pv being the number of pixels in the image that have value v;

5. categorical variables, Im, Id, Iw, and Ip, that indicate, respectively, the model, dataset,
weight treatment, and pruning technique.

Including the unpruned network’s accuracy, a0c , in our statistical model allows us to separately account
for class performance disparities that we know to be generally present in AI models, irrespective of
pruning. We aim to assess what causes them to get exacerbated during pruning. This modeling choice
disentangles that effect from those of other factors, while explicitly accounting for it as a predictor of
post-pruning performance.

Though not all variables are direct quantities of interest, such elements of our design matrix ensure we
are controlling for factors of experimental variability. In other contexts, wherever relevant, the model
could include sensitive group belonging indicators and group descriptors, as well as higher order
interaction terms to address intersectionality, in order to quantify how performance varies across
sub-populations.

From the fit (see Appendix D for fit diagnostics), we observe statistically significant evidence that
both class imbalance and class complexity (as measured by rc and Hc) affect per-class performance
by yielding lower class accuracy for underrepresented and complex classes, when controlling for
other experimental factors. This implies that underrepresented and more complex classes are most
severely affected by pruning procedures. This is line with well-documented findings of dispropor-
tionate misclassification rates for underrepresented gender, skin-type, age, nationality, income, and
intersectional demographic groups in computer vision applications [29, 14, 17, 3, 8], but adds the
dimension of network-modifying actions, such as pruning, to the conversation.

While one of the primary causes of performance degradation in pruned models across classes is, of
course, model sparsity itself, after controlling for this variable, at all levels of sparsity, as sparsity
increases, not all classes exhibit identical levels of accuracy loss, with the difference being driven,
among others, by class imbalance and complexity.

The fit achieves an adjusted R2 of 0.753. With α� 0.01 (one-tailed) significance, we reject the null
hypotheses of E = F = 0 in Eq. 2 being zero, in favor of the alternative hypotheses of E > 0 and
F < 0 respectively. As rc decreases, the class becomes less represented. Then, E > 0 implies that
the expected final accuracy post-pruning is lower when class representation is lower. F < 0 implies
that the expected final accuracy post-pruning is lower for higher entropy classes.

3.2 Limitations

Since the response variable – in this case, accuracy – is bounded between 0 and 1, the assumptions
of OLS do not fully hold. A generalized linear model with an appropriate link function could be
adopted to further improve the fit, at the cost of model simplicity.

Due to the high computing costs incurred in such a large scale study, we do not experiment with, nor
are we able to assess the impact of various choices around the training strategy, such as changes in
the optimization algorithm, or in optimization hyper-parameters such as learning rate, batch size,
or number of iterations. Including such terms would allow to further constrain the contribution of
variables of interest like imbalance in class representation in the training set.

4 Case Studies

After empirically demonstrating the impact of class attributes and representation on class performance
in pruned models across a generic set of image classification tasks, models, and pruning techniques,
we now present narrow, practical case studies that surface specific challenges that emerge in designing
and employing pruned models.
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Figure 1: Average accuracy of the pruned and unpruned model on the digits produced by every writer
in the test set. Each point represents an individual, color-coded by writer group. The lines represent
the best linear fits through the data from the corresponding group.

Figure 2: Effect of image properties on model performance per writer.

4.1 Pruned QMNIST Model

In a feat of computational archaeology, the QMNIST dataset [37] extends the classical MNIST
dataset [21] by recovering additional test images from the original NIST set [13] from which MNIST
was derived, along with useful metadata such as each digit writers’ ID and group. This information
can be used to monitor the performance of a model and its pruned version on groups of writers and
individual writers. In particular, we will show how pruning alters model performance in non-trivial
ways, with accuracy drops disproportionately affecting certain individuals along group or handwriting
style lines.

The digits contained in this dataset were handwritten by different groups of writers: the series
identified as hsf4 was produced by high school students and is known for being more challenging,
while series hsf0 and hsf1 were produced by NIST employees [21, 2]. In the test set, each individual
contributed between 34 and 134 digits.

We train a LeNet architecture (see Appendix C for experiment details) to perform digit classification
on the QMNIST training set, then iteratively prune and retrain the model for 20 lottery-ticket-style
iterations [9] using global unstructured pruning, to achieve a total sparsity of ∼98.6%, corresponding
to approximately 800 parameters, which, incidentally, is comparable to the dimensions of the 28× 28
input space of the task. The total accuracy on the test set degrades from an average of ∼97% to an
average ∼78% due to pruning, across six experimental replicates.

The per-individual performance for the pruned and unpruned models are displayed, for one of the
experiments (seed 0), in Fig. 1, along with group annotations. For all three groups of authors, the
performance degradation follows similar trends, suggesting an apparent impartiality of the pruning
process towards group membership. However, the model’s accuracy on the digits produced by certain
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individuals is significantly reduced after pruning, as is the case for writer 469, on whose digits the
model’s accuracy decreases from 100% to 47.7%.

We investigate the nature of the adverse effects that pruning is exacerbating in this model, and shed
light on some of the high-level concepts that are forgotten upon parameter removal. We notice, for
example, a negative relationship between average digit tilt and performance change post-pruning
(Fig. 2). For further details on the impact of tilt on model performance before and after pruning, see
Appendix C. Similarly, the average pixel activation (which is itself correlated with digit thickness,
elaborateness, and knottiness) correlates with larger drops in performance after pruning for writers
that deviate from the mean in either direction. On the other hand, average Euclidean distance of
each writer’s digits to the mean training image in the corresponding class shows different trends with
respect to its effect on accuracy drop, depending on the the writer’s group membership (Fig. 2). This
surfaces a difference in the model’s treatment of different demographics of writers, which is important
in correctly explaining the network’s behavior in a transparent manner. However, it wouldn’t have
been possible to uncover this without the rich metadata of the QMNIST dataset, which underscores
the need for more academic datasets with demographic annotations or, in the context of ML systems,
for additional feature and data collection for sub-population identification.

Furthermore, Fig. 2 points to the network’s ability to conditionally make use of internal representations
related to these high-level concepts, to aid in the classification of examples that require knowledge
of those quantities; it also points to the problems that might arise when the model’s capacity is
reduced (for example, through pruning) and the net is no longer being able to compute and use said
representations, or related invariances. This will more noticeably affect the cohorts of writers for
which those quantities are discriminative and useful towards digit classification, thus making the act
of pruning not group independent.

Although the group performance, in terms of average accuracy drop, is comparable across the three
groups, disparities in group and individual treatment have emerged upon further analysis of the
pruned network’s behavior, signaling a need for caution and heightened attention towards group and
individual fairness metrics when deploying pruned models.

4.2 Fairness-Aware Decision-Making in Neural Network Pruning with Pareto Optimality

Starting from the finding that class accuracy varies as a function of factors like class representation,
average class entropy, intraclass variability, and class complexity in general, we show, borrowing
from the tools of economics, one way to include group fairness considerations in the selection of
pruning technique to adopt in a realistic application scenario.

Let’s assume we have a large, over-parametrized classifier to productionalize. We can take the
AlexNet architecture trained on MNIST as a proxy for this regime. To take full advantage of our
hardware, the task is to select the best structured pruning technique among the ones experimented
with. However, in real-world production systems, only minimal performance losses are tolerated,
in exchange for memory and inference savings. To simulate this constraint, we can enforce that the
accuracy not fall below 98%. Our suggested course of action is the following: instead of simply
selecting the pruning technique that yields the sparsified network with the largest sparsity without
violating the accuracy requirement, insert fairness as an additional good to consider, and select an
operating point based on the explicit value assigned to each good. To do so, we advocate taking
into consideration the Pareto-optimality of each pruning technique with respect to sparsity and an
application-specific definition of fairness. In this case, a pruning technique is Pareto-optimal if there
is no other candidate pruning technique that is weakly both fairer and sparser. In such a setting, an
engineer working to select a pruning operating point ought to select a method on the Pareto frontier,
the set of all Pareto optimal points.

Fig. 4a shows the pruned AlexNet networks that satisfy the 98% accuracy requirement on the test
set. Here, fairness – or unfairness, rather – is computed as the difference between the maximum
and the minimum class accuracies, among the ten classes in this proxy task. The wider the gap, the
more unfair the class treatment. This is just one of many valid fairness measures, but it is particularly
relevant for resource allocation in systems that tend to a ‘winner-takes-all’ state. As shown in Fig. 3a,
this is the state high-sparsity pruned networks tend to. In general, though, the quantification of
unfairness in a classifier depends on the notion of fairness one chooses, which might be application
specific and context sensitive.
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(a) Per-class accuracy breakdown
as a function of sparsity for L1

structured pruning with weight
rewinding and retraining between
each iteration. Each class is color-
coded according to the unpruned
network’s class performance.

(b) Total accuracy-sparsity trade-
off curves for different magnitude-
based structured pruning tech-
niques.

(c) Unfairness as a function of
sparsity for different pruning tech-
niques, where unfairness is mea-
sured distance between the high-
est per-class accuracy and the low-
est per-class accuracy among all
classes.

Figure 3: AlexNet model accuracy, sparsity, and fairness curves.

The networks marked with a black ‘x’ in Fig. 4a lie on the Pareto frontier. All other configurations
are strictly sub-optimal, and can be discarded. In other words, for any of the unmarked allocations,
there exists an allocation (i.e., a pruned network) that is simultaneously both fairer and sparser.

It is possible, as is the case in this example, that operating points in the Pareto set correspond to
different pruning techniques, thus making it impossible to immediately draw conclusions on the
superiority of any pruning technique without further decisions. However, given a value function,
which encodes the relative importance of each evaluation axis in a trade-off scenario, the Pareto set
can be reduced to a single operating point (or a set of equivalent operating points) that corresponds
to the decision-maker’s preference. For example, if, in a given context and application, fairness
were valued much more (say, 100× more) than sparsity, a rational decision maker would select the
blue operating point at around 68% sparsity over any of the other allocations in Fig. 4a. Note that
different stakeholders, such as model designers and subjects of the model’s decisions, might have
starkly different value functions with respect to the importance they assign to competing objectives,
so transparency in operating point selection is key for ethical engineering and decision making.

4.2.1 Limitations

As we experiment with some plausible examples of fairness metrics that one might consider, we
acknowledge the incompatibility of different fairness metrics, the conundrum of trying to reconcile
fairness at different scales, and the fact that the few metrics considered in this work in no way make
up an exhaustive list [11]. In practice, metric selection is best guided by the specific research or
implementation context. While we focus on class fairness in this analysis, we invite others to explore
further context-specific dimensions of evaluation. The methodology presented in this work can be
naturally extended to more than three objectives of interest.

5 Discussion

As machine learning practitioners, it is important that we remain mindful of the consequences of our
choices and interventions on models, and their effects not only on pure, overall performance metrics,
but also on measures of fairness, bias, and justice.

This work is intended to promote awareness of the extent of the variability engineers and researchers
can expect to observe in the performance of pruned models across subgroups and individuals, to once
again communicate limitations of standard evaluation metrics, and to inform the larger conversation
around transparency and reporting of design choices. We invite the community to be thoughtful about
harmful side effects of what would otherwise appear to be uncontroversial engineering decisions, and
to engineer responsibly by adopting a value-based approach to technical design.
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(a) Conditioned on total accuracy ≥ 98%, which
may correspond to a practical application scenario,
networks obtained through structured sparsifica-
tion are plotted in the sparsity-fairness space. Each
point corresponds to the average of the accuracy
and fairness results of six networks trained with
seeds 0-5.

(b) Three-dimensional trade-off curves for
accuracy-sparsity-fairness, where unfairness is
measured as the distance between the average
per-class accuracy and the lowest per-class
accuracy among all classes. Points identified with
black ‘x’ marks are in the Pareto optimal set.

Figure 4: Pareto frontier for pruning technique selection in a fairness-sparsity trade off scenario.

The adoption of decision-making frameworks rooted in economics notions and traditions comes
with the advantage of bridging the technical gap and language barrier between AI practitioners and
stakeholders. From a policy perspective, this solution provides a single entry point for behavioral
intervention, in the form of a higher abstraction layer that does not interfere with the inner workings
of a pre-existing ML system in ways that may require retraining or recalibration.

6 Conclusion

As authors and contributors to the literature in machine learning, we felt ethically compelled to
clarify intended usage modalities of neural network pruning by defining recommended ways of
inspecting pruned models prior to their deployment, and evaluating pruning techniques and operating
points beyond the customary sparsity-efficiency axes. We invite the community to refrain from the
characterization of novel pruning methods on classifier models exclusively in terms of the, ostensibly
small, drop in total accuracy, without further investigating how that accuracy drop is absorbed by the
different classes or sub-groups of interest in the task.

Broader Impact

Our work seeks to expose shortcomings in the current pruning discourse that may have potentially
harmful real-world implications for underrepresented classes and subsets of individuals subject to the
decision of a pruned model.

Simply utilizing the suggested Pareto optimality framework for engineering decision-making around
pruning does not guarantee the satisfaction of any fairness requirement, should not absolve from
critical thinking, nor should it be misconstrued as a panacea for the lack of fairness considerations in
technical decisions.

The main goal of this contribution is to foster more thoughtful design and use of pruning in ML
research and systems; the lack thereof may result in the adverse consequences highlighted in this
paper.
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A Pruning details

The pruning techniques explored in this work are among the ones implemented in PyTorch [28, 27].
At all iterations, the pruning amount was set to 20% of the unpruned weights (or units/channels, in
the case of structured pruning). Structured pruning was performed along the input axis. All pruning
techniques, except for global unstructured pruning, are layer-wise pruning techniques, meaning that
weight (or units/channels) are compared only to other weights (or units/channels) within the same
tensor.

• l1_unstructured: prunes individual weights in a tensor by zeroing out the one with
lowest absolute value;

• l1_structured: prunes channels or slices of a tensor by zeroing out the one with lowest
absolute L1 norm;

• l2_structured: prunes channels or slices of a tensor by zeroing out the one with lowest
absolute L2 norm;

• linfty_structured: prunes channels or slices of a tensor by zeroing out the one with
lowest absolute L∞ norm;

• random_unstructured: prunes individual weights in a tensor by zeroing at random;

• random_structured: prunes channels or slices of a tensor by zeroing out channels at
random;

• global_unstructured: prunes individual weights in network by zeroing out the ones
with lowest absolute value across all weights in the network;

B Per-class accuracy as a function of sparsity

As sparsity in a network increases as a consequence of pruning, the performance of the network
eventually starts decreasing. Noticeably, however, this phenomenon happens at non-constant rate
across all classes in a classification problem. Certain classes are forgotten earlier, while, on others,
the network’s accuracy remains high even for high levels of sparsity. The accuracy-sparsity trade-off
curves in Fig. 5 show the per-class performance degradation of a LeNet architecture trained and
evaluated on the specified image classification task, and sparsified over 20 pruning iterations, with
one of the pruning techniques explored in this work.

C QMNIST case study: further experimental details

QMNIST is an approximately balanced dataset, meaning that classes have a relatively comparable
number of examples, without stark asymmetry. Fig. 6 is the histogram of examples in each class
in the subset used for training the models in this experiment. Classes are color-coded to match
the legend in Fig. 7, which itself identifies classes by their accuracy in the unpruned model. The
most over-represented class (digit 1) is the one with the highest per-class accuracy, while the most
under-represented class (digit 5) is the one with the lowest per-class accuracy, suggesting that class
imbalance, although minimal, may have an impact on class accuracy. Others factors also play a role,
including class complexity and variability.

Fig. 7 shows how per-class accuracies drop as the network is iteratively sparsified. During this
process, classes that started with a performance advantage over others end up solidifying their
primacy. Noticeable is the accuracy drop underwent by the most challenging class (the digit 5) as
parameters are removed from the network.

The average Euclidean distance from the class mean (itself computed on the training set) for the
digits contributed by each writer is used as a measure of “outliearness" of the writer, which we
hypothesize to be a potential explanation for higher than expected drop in model performance under
pruning experienced by some individuals. The plot in Fig. 1 is represented in Fig. 8a with color-
coding corresponding to each writer’s average Euclidean distance from the mean. The distribution
of this quantity is displayed alongside in Fig. 8b, color-coded so as to match the color bar in the
corresponding scatter plot. Similar plots are shown for the average image activation per user in Fig. 9.
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(a) LeNet on SVHN, random structured prun-
ing

(b) LeNet on FashionMNIST, L2 structured
pruning

(c) LeNet on KMNIST, random unstructured
pruning

(d) LeNet on CIFAR-100, global unstruc-
tured pruning

Figure 5: Per-class accuracy-sparsity trade-off curves for a set of datasets and model architectures
investigated in this work. The trade-off curve of each class is color-coded according to the accuracy
the model achieves on that class prior to pruning.

Tilt is defined as the slope of the least squares line fit through the binarized version of the image. The
intercept could have been used instead, as, since the QMNIST pre-processing procedure includes a
step that centers the digits by positioning their center of mass at the approximate center of the image,
all linear fits should approximately pass though the center of the image, thus reducing the number
of degrees of freedom. Fig. 10 demonstrate how the slope of the line through the points that make
up the digit can identify the tilt of the digit with respect to the vertical axis, which, due to the axis
inversion due to the data format, corresponds to a slope of 0. Positive slopes represent tilts to the left,
negative slopes represent tilts to the right. The average tilt and its absolute value are very distinctively
distributed across the different writer demographic groups, as shown in the histograms in Fig. 11.
High school students, who form NIST HSF series 4, tend to draw more vertically aligned digits, on
average, than NIST employees in series 0 and 1.

The LeNet architecture utilized in this specific case study is fairly standard, consisting of two 3× 3
Convolution-ReLU-MaxPool blocks with 6 and 16 feature maps respectively, followed by three
fully-connected layers with output dimensions of 120, 84, and 10 units respectively, with ReLU used
after all layers except the last.

The effect of tilt on model the percentage change in performance is shown in Fig. 10 in the main body
of the paper; here, we measure its relationship with model performance before and after pruning,
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Figure 6: Histogram of examples in each class
in the training subset used in these experi-
ments. Each class’s bar is color-coded accord-
ing to the unpruned network’s class perfor-
mance, to highlight a possible dependence be-
tween the performance ranking among classes
remains and class representation.

Figure 7: Per class accuracy of LeNet digit
classifier on the QMNIST test set, over 20
iterations of global unstructured pruning with
weight rewinding and retraining between
each iteration. Each class’s accuracy-sparsity
curve is color-coded according to the un-
pruned network’s class performance, to high-
light the consistency with which performance
ranking among classes remains almost unvar-
ied as the network is sparsified.

(a) Per-individual pruned model accuracy versus
unpruned model accuracy, color-coded by average
Euclidean distance of the writer’s digits from the
average class image.

(b) Histogram of writers’ digits’ average Euclidean
distance from the average class image, color-coded
to match the color bar in (a).

Figure 8: Impact and distribution of average Euclidean distance from the average class image for
writers in the QMNIST test set.
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(a) Per-individual pruned model accuracy versus
unpruned model accuracy, color-coded by mean
per-image pixel activation, averaged over all digits
contributed by each writer.

(b) Histogram of writers’ digits’ average pixel acti-
vation, color-coded to match the color bar in (a).

Figure 9: Impact and distribution of average image activation for writers in the QMNIST test set.

Figure 10: On the left, an image from the QMNIST test set. On the right, its binarized version with
the least squares fit used to identify the image’s tilt with respect to the vertical line, i.e., the 0 slope
line, due to the 90◦ axes rotation in this representation.

Figure 11: Distribution of average tilt and average absolute tilt per writer, separated by writer cohort.
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(a) Per-individual pruned model accuracy versus
unpruned model accuracy, color-coded by average
absolute tilt of the digits produced by each writer.

(b) Histogram of average absolute tilt, color-coded
to match the color bar in (a).

Figure 12: Impact and distribution of average absolute tilt of digits for writers in the QMNIST test
set.

(a) Before pruning (b) After pruning

Figure 13: Relationship between model accuracy on the digits produced by each writer and the
average absolute tilt of each writer’s digits.

Table 1: Coefficients of the linear fits shown in Figs. 13a and 13b.

Before After

intercept slope intercept slope

hsf0 0.988 -0.025 0.854 -0.296
hsf1 0.983 -0.008 0.831 -0.237
hsf4 0.974 -0.084 0.771 -0.295
full 0.973 0.006 0.784 -0.138
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Figure 14: Relationship between the fit outcome and the target variable from data, normalized in bins
of the target quantity.

(a) Histogram of residuals (b) Residuals versus target

Figure 15: Distribution of residuals of the OLS fit to the class accuracies.

separately. First, the relationship between model accuracy on individual writers’ digits, first shows in
Fig. 1, is now presented in Fig. 13a with color-coding corresponding to each writer’s average absolute
digit tilt. The distribution of this quantity is displayed alongside in Fig. 13b, color-coded so as to
match the color bar in the corresponding scatter plot.

We then plot per-writer model accuracy before and after pruning as a function of absolute tilt, and fit
the distribution with a linear fit per group of writers (Fig. 13. While tilt already negatively affects
performance even in the unpruned version of the model, especially for the cohort of writers in group
hsf4, the point is that it also affects the change in performance after pruning, i.e. the amount of
performance degradation depends on tilt, and is not constant as a function of tilt. In other words, first,
while all writers may expect some amount of performance degradation due to pruning in general,
users with more tilted handwriting will experience a larger drop in accuracy from the model; second,
the overall dependence of performance on tilt becomes stronger after pruning. This means that
groups and individuals for whom the model was already under-performing prior to pruning are
disproportionately affected by pruning, as the pruned model loses its ability to account for image tilt.

The parameters of the fits are reported in Table 1.
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D Fit diagnostics

The Tables in this section provide further insight in the quantitative results of the OLS fit to the class
accuracies across the experiments considered in this work. They can be used to gather information
about the effect of each individual or cross term to the dependent variable, along with uncertainty
ranges and p-values.

For diagnostic purposes, we show the relationship between predicted and target class accuracy in
Fig. 14, normalized in each bin of the target accuracy to favor regression quality interpretations over
data point density reading. We use this to confirm a linear relationship between the two quantities
with Gaussian-like spread, except for the critical boundary regions where the OLS assumptions fail.
The histogram of fit residuals is shown in Fig. 15a, alongside their distribution as a function of the
target in Fig. 15b.

Dep. Variable: accuracy R-squared: 0.753
Model: OLS Adj. R-squared: 0.753
Method: Least Squares F-statistic: 4.379e+04
Date: Wed, 27 May 2020 Prob (F-statistic): 0.00
Time: 10:31:00 Log-Likelihood: 2.7551e+05
No. Observations: 949298 AIC: -5.509e+05
Df Residuals: 949248 BIC: -5.503e+05
Df Model: 49

coef std err t P> |t| [0.025 0.975]

Intercept 0.6375 0.010 62.286 0.000 0.617 0.658
dataset[T.cifar-100] 0.0074 0.007 1.010 0.313 -0.007 0.022
dataset[T.emnist] -0.4721 0.010 -49.577 0.000 -0.491 -0.453
dataset[T.fashionmnist] -0.1293 0.010 -12.749 0.000 -0.149 -0.109
dataset[T.kmnist] -0.1944 0.012 -15.640 0.000 -0.219 -0.170
dataset[T.mnist] -0.0531 0.011 -4.975 0.000 -0.074 -0.032
dataset[T.svhn] 0.0342 0.010 3.339 0.001 0.014 0.054
model[T.LeNet] -0.0651 0.001 -49.454 0.000 -0.068 -0.063
model[T.resnet18] 0.1577 0.001 186.179 0.000 0.156 0.159
model[T.vgg11] 0.0319 0.001 35.201 0.000 0.030 0.034
weight_treatment[T.rewind] 0.0670 0.002 42.561 0.000 0.064 0.070
pruning_technique[T.l1_structured] 0.4721 0.005 93.869 0.000 0.462 0.482
pruning_technique[T.l1_unstructured] 0.2405 0.005 46.298 0.000 0.230 0.251
pruning_technique[T.l2_structured] 0.4781 0.005 94.198 0.000 0.468 0.488
pruning_technique[T.linfty_structured] 0.4807 0.005 92.822 0.000 0.471 0.491
pruning_technique[T.random_structured] 0.4925 0.005 95.216 0.000 0.482 0.503
pruning_technique[T.random_unstructured] 0.3984 0.006 68.576 0.000 0.387 0.410
weight_treatment[T.rewind]:pruning_technique[T.l1_structured] -0.1592 0.002 -86.052 0.000 -0.163 -0.156
weight_treatment[T.rewind]:pruning_technique[T.l1_unstructured] -0.0745 0.002 -38.068 0.000 -0.078 -0.071
weight_treatment[T.rewind]:pruning_technique[T.l2_structured] -0.1578 0.002 -84.908 0.000 -0.161 -0.154
weight_treatment[T.rewind]:pruning_technique[T.linfty_structured] -0.1834 0.002 -93.028 0.000 -0.187 -0.180
weight_treatment[T.rewind]:pruning_technique[T.random_structured] -0.2162 0.002 -109.179 0.000 -0.220 -0.212
weight_treatment[T.rewind]:pruning_technique[T.random_unstructured] -0.2925 0.002 -133.379 0.000 -0.297 -0.288
np.exp(sparsity) -0.5950 0.007 -85.427 0.000 -0.609 -0.581
np.exp(sparsity):dataset[T.cifar-100] -0.0424 0.003 -12.629 0.000 -0.049 -0.036
np.exp(sparsity):dataset[T.emnist] 0.1515 0.005 32.138 0.000 0.142 0.161
np.exp(sparsity):dataset[T.fashionmnist] 0.0564 0.005 12.223 0.000 0.047 0.065
np.exp(sparsity):dataset[T.kmnist] 0.0710 0.006 12.731 0.000 0.060 0.082
np.exp(sparsity):dataset[T.mnist] -0.0013 0.005 -0.264 0.791 -0.011 0.008
np.exp(sparsity):dataset[T.svhn] -0.0282 0.005 -5.975 0.000 -0.037 -0.019
np.exp(sparsity):pruning_technique[T.l1_structured] -0.2441 0.002 -124.719 0.000 -0.248 -0.240
np.exp(sparsity):pruning_technique[T.l1_unstructured] -0.1141 0.002 -53.828 0.000 -0.118 -0.110
np.exp(sparsity):pruning_technique[T.l2_structured] -0.2465 0.002 -125.146 0.000 -0.250 -0.243
np.exp(sparsity):pruning_technique[T.linfty_structured] -0.2422 0.002 -120.012 0.000 -0.246 -0.238
np.exp(sparsity):pruning_technique[T.random_structured] -0.2399 0.002 -117.360 0.000 -0.244 -0.236
np.exp(sparsity):pruning_technique[T.random_unstructured] -0.1536 0.002 -65.677 0.000 -0.158 -0.149
sparsity 1.3942 0.012 119.751 0.000 1.371 1.417
accuracy0 1.1384 0.005 207.671 0.000 1.128 1.149
accuracy0:weight_treatment[T.rewind] -0.1827 0.002 -90.347 0.000 -0.187 -0.179
accuracy0:pruning_technique[T.l1_structured] -0.0826 0.003 -25.703 0.000 -0.089 -0.076
accuracy0:pruning_technique[T.l1_unstructured] -0.0178 0.003 -6.100 0.000 -0.024 -0.012
accuracy0:pruning_technique[T.l2_structured] -0.0842 0.003 -25.998 0.000 -0.091 -0.078
accuracy0:pruning_technique[T.linfty_structured] -0.0967 0.003 -28.895 0.000 -0.103 -0.090
accuracy0:pruning_technique[T.random_structured] -0.1374 0.003 -39.518 0.000 -0.144 -0.131
accuracy0:pruning_technique[T.random_unstructured] -0.1687 0.004 -45.827 0.000 -0.176 -0.161
accuracy0_quartile -0.0098 0.001 -15.041 0.000 -0.011 -0.009
imbalance 1.2429 0.023 53.527 0.000 1.197 1.288
class_entropy -0.0237 0.001 -43.313 0.000 -0.025 -0.023
np.exp(sparsity):accuracy0 -0.1907 0.002 -91.104 0.000 -0.195 -0.187
accuracy0:accuracy0_quartile 0.0261 0.001 38.494 0.000 0.025 0.027

Omnibus: 38897.417 Durbin-Watson: 0.914
Prob(Omnibus): 0.000 Jarque-Bera (JB): 110954.176
Skew: -0.159 Prob(JB): 0.00
Kurtosis: 4.644 Cond. No. 624.

Warnings:
[1] Standard Errors are heteroscedasticity and autocorrelation robust (HAC) using 3 lags and with small sample correction
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E Datasets

This work builds on publicly available, standard datasets for reproducibility purposes. For all datasets,
the training set is partitioned into a 20% random split for validation and an 80% split for training.
The split is controlled by the experimental seed for reproducibility. Datasets are pulled and verified
using torchvision. All images per dataset are normalized and, at train time, are augmented via
a random crop and a horizontal flip. All images are ultimately resized to fit the input layer of the
networks employed in this work. The dataset sizes and image sizes listed below represent the original
dataset formats prior to our augmentation procedure. The code attached the supplemental material
will shed light on the specific implementation details of the data loading process.

E.1 MNIST, KMNIST, and Fashion-MNIST

MNIST [21], Kuzushiji-MNIST (or KMNIST) [5], and Fashion-MNIST [36] each consists of 60,000
training and 10,000 test grey-scale images.

E.2 QMNIST

QMNIST [2, 37] consists of the standard 60,000 training images from MNIST, but reconstructs a total
of 60,000 test images with attributes, where the 10,000 test samples are included in this reconstruction
procedure (see Sec. C for more details).

E.3 EMNIST

The ByClass EMNIST [6] split consists of 814,255 examples (697,932 training, and 116,323 valida-
tion) drawn from 62 unbalanced classes. These are grey-scale images that represent digits and letters
in the Latin alphabet.

E.4 CIFAR-10 and CIFAR-100

CIFAR-10 and CIFAR-100 consist of 60,000 examples – 50,000 training images, and 10,000 test
images, all of which are 32× 32 color images [18]. CIFAR-10 consists of 10 classes with 6,000 per
class, and CIFAR-100 consists of 100 classes (fine labels), with 600 examples per class. These are
datasets of natural images.

E.5 SVHN

SVHN [26] (Format 2 - cropped digits) consists of 73,257 training and 26,032 test examples. All
examples are color images of housing numbers obtained from Street View.
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